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Subgraphs and Induced Subgraphs

Subgraph |
G' ={V',E'} where V' C V and E' C E

Induced Subgraph
G'={V' E'} where V/ C V and E’ consists of w

all edges with both endpoints in V’
(vertex-induced subgraph)
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Restricted Coloring Problems
Acyclic coloring
Star Coloring



Coloring

proper vertex coloring
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chromatic number X(G)



Acyclic Coloring

proper vertex coloring without bichromatic cycles

acyclic chromatic number y,(G) > x(G)



Acyclic Coloring — No Bichromatic Cycles
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Acyclic Coloring — No Bichromatic Cycles




Acyclic Coloring — Definitions

A proper vertex coloring such that ...

Original Definition
...every (even) cycle uses > 3 colors.



Acyclic Coloring — Definitions

A proper vertex coloring such that ...

Original Definition
...every (even) cycle uses > 3 colors.

Bichromatic Induced Subgraphs

... the subgraph induced by any two color classes is a disjoint
collection of trees (a forest).






Acyclic Coloring — Algorithms

Chordal Graphs

Solvable in linear time for this class of graphs.
(In fact, every coloring of a chordal graph is also an acyclic coloring.)
(Gebremedhin, Pothen, Tarafdar, & Walther 2009).



Acyclic Coloring — Algorithms

Chordal Graphs

Solvable in linear time for this class of graphs.
(In fact, every coloring of a chordal graph is also an acyclic coloring.)
(Gebremedhin, Pothen, Tarafdar, & Walther 2009).

Bounded maximum degree A(G)

» If A(G) < 3, then G can be acyclically colored using 4 colors or
fewer in linear time (Skulrattanakulchai 2004).

» If A(G) <5, then G can be acyclically colored using 9 colors or
fewer in linear time (Fertin & Raspaud 2008).



Acyclic Coloring — Complexity

NP-Complete to determine whether x,(G) < 3
(Kostochka 1978)

NP-hard even when restricted to bipartite graphs
(Coleman & Cai 1986)



Coloring

proper vertex coloring

chromatic number

o



Star Coloring

proper vertex coloring with no bichromatic P,
(That's every P4, not just the induced ones)

star chromatic number xs(G) > xa(G) > x(G)
(A bichromatic cycle implies a bichromatic Pa)



Star Coloring
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Star Coloring
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Star Coloring
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Xs(G) =4 (I think)



Star Coloring — Definitions

A proper vertex coloring such that ...

Original Definition
...every P4 uses > 3 colors.



Star Coloring — Definitions

A proper vertex coloring such that ...

Original Definition
...every P4 uses > 3 colors.

Bichromatic Induced Subgraphs

...the subgraph induced by any two color
classes is a disjoint collection of stars.



Star Coloring — Complexity

NP-Complete to determine whether xs(G) < 3 for planar bipartite
graphs
(Albertson, Chappell, Kierstead, Kiindgen, & Ramamurthi 2004)

NP-hard when restricted to bipartite graphs
(Coleman & Moré 1984)



Star Coloring — Complexity

NP-Complete to determine whether xs(G) < 3 for planar bipartite
graphs
(Albertson, Chappell, Kierstead, Kiindgen, & Ramamurthi 2004)

NP-hard when restricted to bipartite graphs
(Coleman & Moré 1984)

Open Problem
For a split graph G, xs(G) is either w(G) or w(G) + 1.
What is the complexity of determining this?
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Star Coloring — Direct Hessian Computation
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Star Coloring — Direct Hessian Computation




Acyclic Coloring — Indirect Hessian Computation




Acyclic Coloring — Indirect Hessian Computation




Coloring for Efficient Derivative Matrix Computation

Hessian Computation

Star Coloring: Direct computation
Acyclic coloring: Indirect (substitution) computation

Jacobian Computation

Distance-2 Coloring: Direct, 1-dimensional computation
Star Bicoloring: Direct, 2-dimensional computation

Acyclic Bicoloring: Indirect (substitution), 2-dimensional computation

A. Gebremedhin, F. Manne, A. Pothen, What Color Is Your Jacobian?
Graph Coloring for Computing Derivatives, SIAM Review 47:4 (2005).
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Acyclic and Star Coloring Joins of Graphs
The Join Operation x
Main Theorem
The Binary Case



The Join Operation

G1

&G3f

Go






The Main Theorem

Theorem
Let {G; = (Vi, Ei)}iez be a finite collection of graphs. Then

ieT ieT €T, i#j

() xa ((X) G,-> = Zxa(Gf)Jr;gig{ > (v Xa(Gf))};



The Main Theorem

Theorem
Let {G; = (Vi, Ei)}iez be a finite collection of graphs. Then

Xa <®G,-> Dl G)+mm{ > (v;x;,(G,-))}:

ieT ieT €T, i#j

Xs<®Gi> > xs(Gi +mm{ > (\/iXs(Gi))}'

ieT ieT i€T,itj



The Binary Case

(Gl*GQ)*G3=Gl*(Gg*G3)=(G1*G3)*G2:”'

The join operation is commutative and associative
= we will work with the binary case.



The Binary Case

(Gl*Gz)*G3=Gl*(Gg*G3)=(G1*G3)*G2:”'
The join operation is commutative and associative

= we will work with the binary case.

Lemma
Let Gy = (V4, E1) and Gy = (Va, Ep) be graphs. Then

(0) Xa(G1* G2) = xa(G1) + xa(G2)
+min {| V1| — xa(G1), | V2| — xa(G2)};



The Binary Case

(G]_*G2)*G3:G]_*(GQ*G3):(G]_*G3)*G2:“'
The join operation is commutative and associative

= we will work with the binary case.

Lemma
Let Gy = (V4, E1) and Gy = (Va, Ep) be graphs. Then

(0) Xa(G1* G2) = xa(G1) + xa(G2)
+min {| V1| — xa(G1), | V2| — xa(G2)};

(i) Xs(GL* G2) = xs(G1) + xs(G2)
+ min {|Vi| — xs(G1), | V2| — xs(G2)} -



Proof of Lemma

» Gi and Gy are induced subgraphs of Gy * Go.
» G; and Gy cannot share any colors.

Xa(G1 * G2) > xa(G1) + xa(G2)




Proof of Lemma

Xa(G1 * G2) > xa(G1) + xa(G2)




Proof of Lemma

Xa(G1* G2) = xa(G1) + xa(G2)




Proof of Lemma

Xa(G1* G2) = Xa(G1) + Xa(G2) + min {| V1] — Xxa(G1), [Va| — Xxa(G2)}




Proof of Lemma

Xa(G1* G2) = Xa(G1) + Xa(G2) + min {| V1] — Xxa(G1), [Va| — Xxa(G2)}

Xs(G1 * G2) = xs(G1) + xs(G2) + min {|V1] — xs(G1), | V2| — xs(G2)}
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Cographs

Forbidden subgraph characterization

A graph is a cograph if and only if it is Ps-free (does not contain Py
as an induced subgraph).



Cographs

Forbidden subgraph characterization
A graph is a cograph if and only if it is Ps-free (does not contain Py
as an induced subgraph).

Restricted Coloring Characterization
A graph is a cograph if and only if every acyclic coloring is also a star
coloring.



Cographs

Recursive Definition
A graph G is a cograph if and only if one of the following is true.

(i) V=1,
(i) there exists a collection {G;};ez of cographs such that
G = UG; (disjoint union);
€T
(i) there exists a collection {G;};c7 of cographs such that

G = ®G (join).

i€l



Cographs and Cotrees

Canonical cotree
Unique (up to isomorphism)

D
(0) (0) (0)
a b (U (1) ¢ d

e f g h

Binary cotree

Algorithmically convenient



Acyclic and Star Coloring Cographs

Theorem
An optimal acyclic coloring of a cograph can be found in linear time.
Furthermore, the obtained coloring is also an optimal star coloring.



a b ¢ d e f g h

Xa(Gl * G2) = Xa(Gl) + Xa(G2) + min {|V1| - Xa(Gl)a |V2| - Xa(GZ)}

a “,
-

Example

4



a b ¢ d e f g h

Xa(Gl * G2) = Xa(Gl) + Xa(G2) + min {|V1| - Xa(Gl)a |V2| - Xa(GZ)}

a “,

Example

d h
V1| =4, xa(G1) =3 Vol =4, xa(G1) =2



Example
(1) (0)
o (© @O O
a b ¢ d e f g h
Xa(GL* G2) = Xa(G1) + xa(G2) + min {| V1] — xa(G1), [ V2| — xa(G2)}
= 3+42+min{4—3,4-2}
= 6
a f
c g
d h

V1| =4, xa(G1) =3 Vol =4, xa(G1) =2
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Future Work
Extension to other graph classes

Tree-cographs Same operations as cographs, but start with trees
rather than single isolated vertices

P,-sparse No set of five vertices induces more than one Pj.
(Generalize by adding a third composition operation.)

Py-lite ...
P;-extendible . ..



Future Work
Extension to other graph classes
Tree-cographs Same operations as cographs, but start with trees

rather than single isolated vertices

P,-sparse No set of five vertices induces more than one Pj.
(Generalize by adding a third composition operation.)

Py-lite . ..
P;-extendible . ..

Other Decompositions

Modular
Split
Clique

Tree



Thank You!

Questions?
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